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I. TINTRODUCTION

Most decision problems encountered by environmental policymakers involve
uncertainty. Given the difficulties of conducting controlled experiments to
improve understanding of environmental phenomena, statistical inference is
frequently employed. This research usually involves a statistical model that
is highly dependent on the investigator's prior beliefs about the relationship
between the dependent variable of interest and a list of explanatory
variables. When the policymaker uses the results of this research to select a
course of action, he employs the combined result of the investigator's data
and prior beliefs. Unfortunately, the investigator's prior beliefs are not
often reported completely.

This paper focuses on statistical information generated by the Lave and
Seskin (1970, 1973, 1977) and the Lave and Chappie (1982) studies of the human
health impacts of air pollution. After Ihaving admittedly engaged in
substantial pretesting, the authors of these studies report a selected set of
results. However, they provide little information about the role in selection
that their prior beliefs have played; that is, they do not report the
robustness of their reported results with respect to key parameters of
interest (focus variables) as the set of included explanatory variables
(doubtful variables) changes. Since different sets of doubtful variables may
be equally plausible a priori, the investigator should report the sensitivity
of the estimates of the signs and magnitudes of the focus variables to changes

in the list of included doubtful variables. A failure to consider and report



results for the full range of alternative model specifications which could be
"true" means that the opportunity for the policymaker to select whatever mix
of possibly "true" specifications best suits his objectives has been censored.
The selection of a single model conforming to the investigator's priors can be
misleading when several models that differ in their policy implications have
some prior creditability. All available information bearing on the robustness
and general validity of the alternative models should be provided the
policymaker. Because the selectively reported results of Chappie and Lave
(1982) and Lave and Seskin (1970, 1973, 1977) have been so widely cited, we
apply Leamer's (1978) procedure in this paper to estimate the specification
uncertainty of their models.

IT. A BRIEF HISTORY OF AIR POLLUTION AGGREGATE EPIDEMIOLOGY

Although its influence on policy is unclear, the sequence of papers and
books produced by Lave and his colleagues on the human health effects of air
pollution has been some of the most frequently referenced work in
environmental economics over the last two decades. The basic approach has
remained that adopted in the path-breaking effort of Lave and Seskin (1970).
Using data for 114 U.S. metropolitan areas, they employed single equation
ordinary~least-squares methods to regress 1960 total, infant, and
disease~specific mortality rates in each of 114 U.S. metropolitan areas upon
average ambient sulfate and particulate concentrations, and assorted
demographic and socioeconomic variables. They concluded that the total.
mortality elasticity with respect to ambient sulfates was 0.05; with respect
to ambient particulates, this same elasticity was estimated to be 0.04. 1In a
subsequent paper, Lave and Seskin (1973) increased the sample size to 117,

introduced some additional air pollution, demographic, and socioeconomic
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variables, and tested specifications that were nonlinear in the original
variables. The conclusions of their 1970 paper were unaltered, however.
Finally, the extremely detailed and carefully written Lave and Seskin (1977)
book evaluated 1969 as well as 1960 metropolitan area data, employed a variety
of cross-sectional, time-series, and pooled models, and yielded nearly the
same conclusions.

Recently, Chappie and Lave (1982) have collaborated to reconfirm the
results reported in Lave and Seskin (1970, 1973, 1977). They reestimate
earlier models with 1974 data for 104 U.S. metropolitan areas. The only new
result of importance was the increased sulfate elasticity (now 0.13) and the
reduced particulates elasticity (now 0.006). Additional general conformations
are provided by several authors who have been inspired to adopt the
Lave-Seskin techniques and to apply them to different aggregate epidemiology
data sets.lj

These confirmations have nevertheless failed to deter numerous critics
who, as Chappie and Lave (1982) note, criticize the aggregate nature and the
poor quality of the data, and raise issues of omitted variable bias, incorrect
functional forms, and the presence of simultaneity. The critics' general
procedure has been to use the same or similar data and to find a model which
provides air pollution coefficients contradicting the Lave-Seskin results.
According to Freeman (1982), Viren (1978) proceeds by adding assorted
explanatory variables to the Lave and Seskin (1970, 1973) regressions until a
combination is found that reduces the air pollution coefficients to
statistical insignificance. Thibodeau, et al. (1980) achieve the same result
as Viren (1978) by removing a set of "outliers" from the Lave and Seskin

(1970, 1973) data. By positing a reciprocal relationship between mortality



incidence and physicians per capita, Gerking and Schulze (1981) obtain
statistically significant negative air pollution coefficients, i.e., higher
air pollution is associated with declines in mortality incidence. Each of
these critics concludes that "... small changes in model specification appear

U I&/

to produce comparatively large changes in implications. Neither "small"

nor "large" is defined, however. Whatever these definitions, the obvious

: . : 3
thrust of the critics' stance is that it "... may be unwarranted...“—/

to
employ Lave-Seskin type data and methods to infer a consistent link between
air pollution and mortality incidence. No hint is provided the reader about
how difficult it would have to be to produce these exceptions before the
critics could believe that inferences of a consistent link are warranted.

Lave and Seskin (1977) and Chappie and Lave (1982) have responded in kind
to the critics. They busily add and delete numerous combinations of
explanatory variables, partition their data sets, and experiment with
différent functional forms, equation systems, and estimators. The estimates
for several alternative specifications are reported. For example, for each
choice of a mortality dependent variable and its density function, and for
each choice of an equation system and functional form, Chappie and Lave (1982)
have a stock of 53 measures which they or their critics consider to be
plausible candidates for statistically explaining variations in 1974
metropolitan area mortality incidences. Of the (253) possible inclusion-
exclusion combinations of these candidate explanatory variables, 9
ordinary-least-squares single equation regressions are reported in which the
unadjusted total mortality rate is the dependent variable. Another 12 similar

regressions with the nontraumatic mortality rate as the dependent variable are

also reported.é/ This dependent variable also appears in 2 single equation,



genreralized-least-squares regressions. Finally, four two-stage-least squares
regressions that consider the possible simultaneity between physicians per
capita and mortality incidence are reported. Clearly, Chappie and Lave (1982)
do not exhaust the number of alternative regressions which might have been
reported. Without even having to resort to equation systems, nonlinear forms,
or restrictions on coefficient signs and magnitudes, anyone who wishes to
obtain a contradictory set of results can most likely find them among the
(253) single equation linear model choices.

Neither the practitioners nor the critics of the Lave-Seskin type methods
have the means to close the debate; they are unable to provide convincing
coverage of the range of plausible models. Both the defenders and the
skeptics have been quick to point out that the source of the difficulty lies
in the lack of a priori information with which to curb the numerous aspiring
models. In Koopman's (1949) terms, the estimation exercise therefore becomes
an hypothesis search rather than an hypothesis test. The tests being applied
are not independent of the information embodied in the sample. One is looking
for hypotheses which best fit the data without being able to specify the
alternative hypotheses that might find greater or lesser support. According
to whether one is a defender or a skeptic of Lave-Seskin type methods,
multiple regression analysis is used to browse for significant or
insignificant t—statistics.éj With the highly aggregated data the Lave-Seskin
methods use, there is little prior knowledge either to guide the search for
the model that best fits the data or that best uncovers causal
relationships.éj In the absence of more information with which to structure
models, ending this debate requires a complete and communicable method of
model searching and a compact format for reperting the results of the entire

search.



In spite of the large number of papers using Lave-Seskin methods, only
Smith (1977) and Page and Fellnmer (1978) supply charts that allow the reader
to duplicate their work. The latter employ factor analysis and canonical
correlation techniques. Each of these techniques follows a purely mechanical
yet communicable statistical format to form scalar indices of groups of
variables. Cne then employs standard hypothesis tests to assess the
associations amonrg the groups. However, the mechanical nature of the
statistical format makes it difficult to introduce restrictions provided by
"true" prior information; moreover, the relationship of the indices to any
real phenomenon is frequently unclear.Z/

Though the Page and Fellner (1978) procedures reduce the temptation to
arrive at a "final" form for a mecdel by repeated application of hypothesis
tests to the same set of data, they do not obviate it. Smith (1977) chose to
apply the Ramsey (1969, 1974) tests for specification error to 32 models he
regarded as "fairly representative" of those most often accepted as "final" in
the Lave-Seskin type literature of the 1970's. His stated purpose was to
ascertain whether the "final" models others had arrived at via the pretesting
procedures common to the Lave-Seskin type literature were acceptable on the
basis of the Ramsey (1969, 1974) tests for incorrect functional form, omitted
independent variables, simultaneity, and heteroscedasticity. His remarks
contain a hint of surprise that most of the models performed quite creditably
according to the tests. Moreover, Smith's (1977) as well as Page and .
Fellner's (1978) results are consistent with the Lave and Seskin (1977)
estimates of the association of air pollution and human mortality. However,
it is unclear how to evaluate the alternative specifications with which Smith
(1977) and Page and Fellner (1978) work. The prior beliefs of the researchers
who originally specified the alternative "final" models are unknown. One
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therefore has to accept or to reject each separate model, with its unknown

priors embedded.

ITI. AN ALTERNATIVE APPROACH TO SPECIFICATION ANALYSIS

With 53 or even as few as 6 or 7 explanatory variables available for use
and with a number of alternative functional forms, mortality measures, and
density functions for each mortality measure, macroepidemiology researchers
have numerous ways to impose their prior beliefs about the impact of air
pollution upon human mortality. Though Smith (1977) and Page and Fellner
(1978) are mindful of the role that priors have played in reported estimates,
their efforts are inherently incapable of assessing the range of priors other
investigators might have employed. Leamer's (1978) SEARCH method (Seeking
Extreme and Average Regression Coefficient Hypotheses) provides this
assessment and portrays it with compact summary statistics. The SEARCH method
is fully described elsewhere.gj In this section, we try only to convey enough
of the flavor of SEARCH to allow the reader to form his own judgments about
the informativeness of the inferences that our subsequent air pollution
aggregate epidemiology estimates furnish.

In accordance with Leamer and Leonard (1981), consider the following

simple linear regression:
Yo = Bxe * Y123 ¥ YoZpe T Heo (1)

where Yt is mortality incidence, t indexes a set of T observations, ut is an

independently and normally distributed error term with mean zero and unknown



variance, 02, and X, is air pollution. The latter term is a focus variable
because it is the center of research concern and will therefore be included in
every specification the investigator tests. He wants to know the sign and the
magnitude of the unknown parameter, B. Doubtful variables are the zit(i=1,2),
because the prior necessity of their presence in (1) is uncertain. These are
the variables whose introduction confronts the researcher with a tradeoff
between increasing the bias and reducing the variance of his estimates. In
air pollution aggregate epidemiology, physicians per capita, percentage
college-educated, and percentage over 65-vears old are traditional examples of
doubtful variables. Alternatively, if one has a prior belief that percentage
over 65-years old obviously belongs in any regression that purportedly
explains mortality incidence, he would then be insisting it become a focus
variable.

Only 2 doubtful variables are included. It might therefore be feasible
to estimate and report the four regression specifications resulting from
decisions to include or exclude 2. and/or Z,. This would clearly sharpen
the reader's judgments about the robustness of the estimates; however, the
procedure does not allow the investigator to employ any prior restrictions he
suspects might apply to the signs and magnitudes of Y, and Y o Leamer and
Leonard (1981) suggest that the investigator employ these priors and thereby
enlarge the search. Specifically, they urge him to define a composite
variable:

Wt(e) =2, + ﬁzzt (2)
where 6 is a variable which reflects the investigator's priors. For each

value of 0 combined with the sample data, there is a unique regression



specification, and therefore a different estimate, E(B), for the air pollution
coefficient. Because 6 can be continuous over the real line, the set of
alternative specifications of (1) need no longer be limited only to the four
combinations of 2., and Zy, based on their exclusion and/or inclusion. An

obvious measure of specification uncertainty is then the difference in the

extreme values of é(ﬁ). If the interval [émin, émax] is small relative to the
sampling uncertainty, or if decisions are insensitive to variations in the
values of é over this interval, then the specification is relatively
unambiguous. A large difference between émin and émax implies that
specification uncertainty plays a large role relative to sampling uncertainty
in the overall uncertainty about the value of the focus coefficient, é. In
essence SEARCH evaluates specification un.ertainty by searching out the
extreme values of é that occur over all possible covariance matrices.

Leamer (1978) demonstrates that the set of all possible values of (yl,yz)
generated by varying 6 over the real line is an ellipse of constrained
estimates. Each value of 0 represents a different constraint, a different
point on the ellipse, and thus a different tradeoff between bias and variance.
However, the sample data may make some of these points appear to be extremely
unlikely. For example, if Yl is the coefficient for percentage of the
population 65 years old or more, a coefficient value which allowed 99.9

percent of the population to exceed this age would be unlikely to appeal to

the user of aggregate epidemiology data. The set of points to be considered on
the ellipse of constrained estimates can be bounded by defining an o percent

4]
(0 < @ <100) sample confidence ellipse.;/ This point set, which is defined

by the intersection of the points in the interior of the locus of constrained



estimates and the o percent sample confidence ellipse, represents all possible
posterior pairs of (;1,;2) that can result from some prior distribution, given
that only sample points lying in the o percent confidence ellipse are to be
considered. For each confidence ellipse, minimum and maximum values of é(e)
can be generated; that is, one can show how different weights on the prior and
the sample distributions cause specification uncertainty to vary. Figure 5.1
in Leamer (1978) is helpful in fixing these ideas.

Leamer (1978) provides a role for the precision of the prior distribution
by constructing an "information contract curve" completely analogous to the
Edgeworth-Bowley contract curve used in the economic theory of exchange for
pairs of consumers. In this case, the sample data, which is analogous to one
of the consumers, conveys its iniormation via a likelihood function. The
other consumer is a researcher who communicates his information by means of a
prior distribution. Leamer's (1978) Figure 5.8 and his surrounding discussion
show how this contract curve, which is the locus of tangencies between the
conflicting information represented by prior ellipses and sample ellipses, is
the locus of informationally efficient points that are jointly preferred by
the prior and the data. As with any contract curve, one cannot discriminate
among points on it unless more structure is introduced. Thus the distance
along the curve can be used as another measure of specification uncertainty.
0f course, since the curve is a locus of tangencies between prior and sample
ellipses, one could restrict his attention to an interval of the curve lying
within some o percent confidence level of the data.

Leamer (1978) shows that more structure with which to choose among points
on the contract curve is provided by a measure of the relative precisions of

the prior and the sample distributions. For example, if the sample
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information has low relative variance, one would be more interested in that
part of the contract curve closer to the least-squares point. Alternatively,
if the prior information is more precise, points on the contract curve in the
vicinity of the prior point would be preferred. The difficulty is that the
precisicn of the prior distribution is frequently no more than vaguely known.
Leamer (1978) proposes to overcome this difficulty with a procedure which
identifies the standard deviation a normally distributed prior must have
("prior sigma") in order to be simultaneously on the contract curve and within
a particular confidence ellipse. If, for example, the prior ¢ is very
informative and one is dealing, say, with the 95 percent confidence ellipse,
he may infer that the contract curve point is quite unlikely, since the prior
would have had to be quite small in order to generate it. -

The discussion has concentrated upon a single prior; however, Leamer
(1978) shows that the same procedures may be extended to linear combinations
of focus variables. Thus, when different researchers have quite different
combinations of priors, the specification uncertainty inherent in each of the

combinations may be fully described.

IV. AN APPLICATION

After having made the explorations reviewed in Section II, Chappie and
Lave (1982, pp. 365,371) conclude that their 1974 data shows that:
"A strong, consistent, and statistically significant association
between sulfates and mortality persists .... When related to the EPA's
(1979) estimate of abatement costs, these results support and strengthen

the conclusions of Lave and Seskin (1977) that stringent abatement of
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sulfur oxides and particulates would produce social benefits (based on
health effects alone) greatly exceeding social costs. We regard the
evidence for stringent abatement as compelling...."
Ordinary-least-squares regression number 2-5 in Chappie and Lave (1982)
embodies nearly all their maintained hypotheses about the relation between
mortality and air pollution. Most important, its coefficients for the
arithmetic mean air pollution measures are very similar to those in their

other reported regressions and thus form the basis for the above-quoted

conclusion.

1974 TMR

L]

528.819 - 3.043(MINS) + 13.866(MEANS) - 1.774(MAXS)
(6.19) (=0,37) (2.87) (-2.34)

+ 1.234(MINP) - 1.008 (MEANP) + 0.191(MAXP) + 58.417(%65+)
(0.73) (~1.19) (1:.25) (16.27)

+ 2.412(%NW) - 0.009318(MEDINCM) + 18.813(LOGDENS)
(3:21) (-1.39) CL.:05)

- 26.236 (LOGPOPN) ~ 10.092(%>4YRCOLL)
(-1.51) (-4.56)
The variables are defined in Table 1. Sample size was 104 metropolitan areas.
The numbers below the regression coefficients are t-statistics. With a sample
size of 104, the unadjusted R2 for this expression is 0.888. Most of the
coefficients are intuitively reasonable in both sign and magnitude, and
several achieve high degrees of statistical significance.

We now apply Leamer's (1978) SEARCH procedure to this equation.
Initially, we take MEANS to be the only focus variable. All other candidate
explanatory variables are doubtful in the sense that we doubt that theif
coefficients differ from zero or from small numbers. The upper and lower
bounds of the estimated coefficient for MEANS are therefore the range of
estimates that can be produced by examining all alternative weighted average

combinations of the regressions formed by omitting or not omitting each of the
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TABLE 1
Definition of Variables*

1974 TMR -- The unadjusted 1974 mortality rate per 100,000 population
from all causes of death,

MINS -= Smallest 24-hour sulfate reading in micrograms per cubic
meter.

MEANS == Arithmetic mean of 24-hour sulfate readings in micrograms
per cubic meter.

MAXS == Largest 24-hour sulfate reading in micrograms per cubic
meter.

MINP -- Smallest 24-hour total suspended particulate reading in
micrograms per cubic meter.

MEANP ~-—- Arithmetic mean of 24-hour suspended particulate readings

in micrograms per cubic meter.

MAXP —-— Largest 24-hour total suspended particulate reading in
micrograms per cubic meter.

%65+ -—- Percentage of area population at least 65 years old.

ZNW —- Percentage of nonwhites in area population.

MEDINCM  ~- Median income of families in area in dollars.

LOGDENS  -- The logarithm of population density per square mile in the
area.

LOGPCPN  -- The logarithm of total population in millions.

%>4YRCOLL -- Percentage of area population at least 25 years old who are

college graduates.

*All acronyms, definitions, sources, and data are identical to those in
Chappie and Lave (1982).



doubtful variables. Thus, the regression results that Chappie and Lave (1982)
report, and all results they could have reported, must lie within these
bounds.

The upper and lower bounds in Tgble 2 are the extreme values of the
coefficients for MEANS with various levels of the data confidence interval.
These correspond to the extreme values within the ellipse of constrained
estimates referred to in Section III. At the extreme left of the table are
the least-squares estimates. The contract curve traces the value of the
coefficient for MEANS along the locus of tangencies between the prior ellipses
and the sample ellipses. The t-value of the coefficient for the pooling of
the sample and the prior evaluated at a particular point on the contract curve
is represented by the posterior-t. The value of the standard deviation of the
prior distribution one would have to select to obtain the same point on the
contract curve is given by the prior sigma. Specification uncertainty is
simply the difference between the upper bound and the lower bound of the MEANS
coefficient at the indicated levels of confidence in the data. Sampling
uncertainty is defined as 4 times the standard error of the focus variable,
which corresponds to a 95 percent confidence interval.

For all values of the data confidence in Table 2, the specification
uncertainty exceeds the sampling uncertainty. At the prior (prior sigma = 0),
the specification uncertainty exceeds the sampling uncertainty by more than a
factor of 5 and the lower bound of the MEANS coefficient is -35.9. Moreover,
except for a data confidence of 0.250 or less, the lower bound of the MEANS
coefficient is negative throughout. In the absence of guidance as to the
relative weights to place on priors versus sample information, these results

fail to make a compelling case for a statistically significant association
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TABLE 2
Extreme Bounds and Uncertainty Measures for
the Coefficient of Mean Sulfates (MEANS)

Standard error (Sample Sigma) of MEANS = 4,826

Data 0.0 .250 .500 « 750 .950 .990 1.000
confidence

Upper 13.9 27.8 30.0 32,3 36.0 38.7 70.0
bound

Lower 13.9 .170 -1.97 -4.23 -7.71 -10.3 -35.9
bound

Specification - 27.970 31.97 36.53 43: 71 49.0 105.9
Uncertainty

Contract 13.9 8.11 8.13 .23 8.48 8.73 20.2
curve

Posterior 2.87 3.76 3.88 4,02 4,26 4,46 -13.7
t-value

Prior C 9.53 8423 7:23 G612 5.50 0.0
Sigma (GO)

Sampling Uncertainty = 18,92



between arithmetic mean ambient sulfate concentrations and mortality
incidence.

One might justifiably argue that some of the variables we have treated as
doubtful while constructing Table 2 should really be focus variables. The
addition of these new focus variables could cause the conclusions drawn from
Table 2 to be altered. We possess strong priors, for example, that increasing
the number of people more that 65-years old, will, cet. par., increase
mortality incidence. Most air pollution epidemiologists have strong prior
beliefs that total suspended particulates, especially their "fine" particulate
versions, have undesirable health impacts. Better education supposedly makes
one a more efficient producer of health, while higher income increases the
demand for health and also reduces tle relaiive price of health-producing
services. The influence these and other priors have upon the upper and lower
bounds of the coefficients for MEANS at alternative levels of sample data
confidence are presented in Table 3. Although the bounds on the MEANS
coefficients are nearly always reduced by these priors, the reduction is very
small with the sole exception of the lower bound for %65+, As in Table 2,
specification uncertainties continue to exceed the MEANS.sampling uncertainty
of 18.92 for all levels of data confidence down to 0.250. Similarly, the
lower bound of the MEANS coefficient for all priors remains negative down to
this same data confidence. The lower bound becomes barely positive if one
chooses to give substantial weight to the data rather than to the prior. This
exception will hardly be sufficient to convince most people of Chappie and Lave's
(1982, p. 365) assertion that it is this data rather than their priors which

u

generate ... a strong, consistent, and statistically significant association

..." between sulfates and mortality. Instead, the range of inferences about
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TABLE 3
Extreme Bounds on Mean Sulfates (MEANS)
When MEANS and Another Variable are Focus

Focus Data Confidence
Combination 0.0 .250 .500 .750 .950 1.00
MEANS 1} 13.9 b7 29.9 32.3 35.9 68.7
and MEANP L 13.9 .180 -1.96 -4.23 -7.70 -35.7
MEANS U 13.9 26.¢ 28.6 30.4 32.8 3547
and Z65+ L 13.9 403 -1.54 -3.51 -6.25 -10.6
MEANS U 13.9 27.8 30.0 32.3 36.0 70.0
and 7%NW E 13.9 .178 -1.96 -4,22 -7.69 -35.7
MEANS U 13.9 27.8 30.0 2203 35,9 65.5
and MEDIN. i L 13.9 el 2] -1.89 4,12 -7.53 -31.2
MEANS U 13..9 27.7 29.9 322 35.9 69.8
and LOGDENS L 13.:9 .360 -1.74 -3.95 -7.34 -33.2
MEANS U 13.9 278 30.0 32.3 36.0 69.2
and LOGPOPN L 13.9 .254 -1.86 -4.,10 ~7.52 -33.6
MEANS U 13.9 27:3 29.3 31.5 A q 51.7
and %Z>4YRCOLL L 13.9 .187 -1.96 -4.,23 -7.70 -28.5

U = extreme upper bound.

L = extreme lower bound.



the impact of air pollution on mortality incidence remains wide under a
variety of alternative models.

The high degree of specification uncertainty that the MEANS coefficient
exhibits in Tables 2 and 3 could, of course, be due to the aggregate nature of
the data being employed. As earlier noted, some of the candidate explanatory
variables, such as %65+, are obvious focus variables for any expression
intended to explain mortality incidence. If the coefficients for these
variables also display so much specification uncertainty that they are
uninformative, then one might reasonably conclude that little can be learned
from this aggregate epidemiology data set. Table 4 presents the extreme
bounds for other focus variables, each in pairwise combination with the focus
vaciable, MEANS. With the sole exception of %65+, the range in the extreme
bounds is great. Except for the extreme bounds of %65+ and %>4YRCOLL, the
signs of the upper and lower bounds usually differ: however, even for these
two variables, specification uncertainty exceeds sampling uncertainty at low
levels of data confidence. One might reasonably conclude that there are a
large number of explanatory variables not included in this data set that would

exhibit no less specification uncertainty than is exhibited by the variables

in Table 4.

The preceding discussion is limited to the single equation specifications
with mortality incidence as the sole endogenous variable that compose nearly
all the published work in air pollution aggregate epidemiology. Chappie and
Lave (1982) recognize that simultaneities may exist between mortality and
certain of their explanatory variables such as %65+. At the same time they
admit that their single equation results could be biased due to the omission

of medical care and life-style variables. Perhaps because the plausible
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TABLE &4

Extreme Bounds on Other Variables When Mean
Sulfates (MEANS) and Other Variables are Focus

Focus Data Confidence
Combination 0.0 .250 .500 .750 .950 1.00
MEANP U -1.01 1.46 2,28 2,93 3.42 9.18
and MEANS L -1.01 -3.41 e S -4.77 =5.22 -9.34
Sampling Uncertainty of MEANP = 6.76
%65 U 58.42 64.5 66.4 677 68.6 70.1
and MEANS L 58.42 52.8 51.3 50.3 49.8 49.3
Sampling Uncertainty of %65+ = 14.40
ZNW U 2.41 3.98 4.46 4.84 5al2 7.29
and MEANS L 2.41 P .170 -.286 -.634 =5.44
Sampling Uncertainty of ZNW = 3,01
MEDINCM U -.0093 .0054 .0099 L0134 .0159 .0320
and MEANS L -.0093 -.0254 -,0308 -.0351 -.0385 -.0795
Sampling Uncertainty of MEDINCM = .0268
LOGDENS U 18.81 2347 28.5 32.2 34.9 54.6
and MEANS L 18.81 -8.65 -14.3 -18.9 -22.4 -70.8
Sampling Uncertainty of LOGDENS = 71.67
LOGPOPN U -26.24 4.36 9.34 13.2 16t 40.6
and MEANS L ~26.,24 -27.7 ~33.2 -37.6 -40.9 -80.2
Sampling Uncertainty of LOGPOPN = 69,50
%>4YRCOLL U -10.09 =7.42 -6.79 -6.37 -6.13 -5.78
and MEANS L -10.09 =14.2 -15.6 -16.8 -17.6 -30.0
Sampling Uncertainty of %Z4YROCOLL = 8.85
= extreme upper bound.

extreme lower bound.



